DrCaptcha: An interactive machine learning application
نویسندگان
چکیده
منابع مشابه
An Interactive Machine Learning Framework
Machine learning (ML) is believed to be an effective and efficient tool to build reliable prediction model or extract useful structure from an avalanche of data. However, ML is also criticized by its difficulty in interpretation and complicated parameter tuning. In contrast, visualization is able to well organize and visually encode the entangled information in data and guild audiences to simpl...
متن کاملTowards Learning From Stories: An Approach to Interactive Machine Learning
In this work, we introduce a technique that uses stories to train virtual agents to exhibit believable behavior. This technique uses a compact representation of a story to define the space of acceptable behaviors and then uses this space to assign rewards to certain world states. We show the effectiveness of our technique with a case study in a modified gridworld environment called Pharmacy Wor...
متن کاملInteractive machine learning using BIDMach
Machine learning is growing in importance in industry, the sciences, and many other fields. In many and perhaps most of these applications, users need to trade off competing goals and build different model prototypes rapidly, which requires much human intelligence and is time consuming. Therefore, interactive customization and optimization aims to help expert incorporate secondary criteria into...
متن کاملApplying an Interactive Machine Learning Approach to Statutory Analysis
Statutory analysis is a significant component of research on almost any legal issue and determining if a statutory provision applies is an integral part of the analysis. In this paper we present the initial results from an attempt to support the applicability assessment in situations where the number of statutory provisions to be considered is large. We propose the use of a framework in which a...
متن کاملAn Interactive Machine Translation System with Online Learning
State-of-the-art Machine Translation (MT) systems are still far from being perfect. An alternative is the so-called Interactive Machine Translation (IMT) framework, where the knowledge of a human translator is combined with the MT system. We present a statistical IMT system able to learn from user feedback by means of the application of online learning techniques. These techniques allow the MT ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Science and Information Systems
سال: 2020
ISSN: 1820-0214,2406-1018
DOI: 10.2298/csis200130048g